
-AD A056 821 COLORADO UNIV BOULDER DEPT OF COMPUTER SCIENCE F/G 9/2 •
THE FSCAN LEXICAL ANALYZER GENERATINS SYSTEM .CU)
JUN 78 G CLEMM DAAG29~ 78—G~ OOle6

UNCLASSIFIED CU—CS—JIG—lb ARO—150 714 .3—M NL

I END

9

‘I

_ _ _ -

H ~~~~~ j~~ 7~ V3~~~

LEVEL i’
~~

~~~~~~~~~~~~~
~ ‘I 

_ _ _

_ _ _ _ _ _ _ _  -I

~~~~~~~~~~ OF ~ ThIPUThR

DbC

~~~ ~~~~~~~~~ : ___________________ _ __ _ __ __ _ __ _ _  _ _ _ _ _ _

_______  

p

_ _ _ _ _ _ _  

7,
~~~Lt —

~~~~~~~~



-~~~~~ ~~~~-~~~~~~~~~~~~~~~~~~~~~~ ---- - - _ _

JHE LEXICAL ANALYZER GENERATING_SYSTEM 4A • —

by
ICd~1 Geoffrey Clenin

Department of Co u er Science
University of Colorado

Boulder, Colorado 80309

F 

/
~~~~~ 2~~~8J H
}jERIMTECH CAL RE~~ T~~)

U. S. ARMY RESEARCH OFFICE

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~.. m ~~~y-,~ i ?~]:

21 197]

~T1L E1 ~JE
Approved for publ ic release ;

Distribution Unlimited

A
~~~~~~~ ~‘)7 26 003


. .- -
~
-

_ _ . J ~.
.—,-— ‘-.—---—- -— --‘-‘-.- —- -.---

——— —
~

- —-- --

-- -
-

I

~THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION , UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.

— .

~~~~

I

~e acknowl edge U. S. Army Research support
under contract no. DAAG29-78-G-0046 and
National Science Foundation support under

_

~

II

~

I

~ 

_



- - - ——— - --~~~-.~~~~~ ——---, - -- - - - , -  - . - - - - 

*ScVaIYY CI.A$$*?ICATION OY THI S PAG I (lIb.. D.*. ‘... e 
_______________________________

D~~~~~ Th? WtIM~~kI1 ATI~~~~ DA~~V ~~ AD Dh$1RUCfl~~i$U~ LT VI% I ~~~~~~~~~~~~~~ I ~~ I I~~~~~ E~ ~~~~ BEVOP~ CONPL!1ZNO PO~~r. UIPOOT NUN SR • SOVY ACCCS$$ON NO )~ NIc,.Issrs CAVM.OO NUISOIR

4. ?I?LI ( d ~~~~UU.) I. TYPI OP NIPORt S Pt~~~~~ cove~so

“The FSCAN Lexical Analyzer Generatina System” 
____________________________
S. P(RP O~~~~NO ORI. NIPONY

1. AUtNON(~ S. CONTR ACT ON SNANT ~UNSI~~.)Geoffrey Clenmi DM629-78-G-0046 /
MCS77-02194 ”NSp

S. PINFO RIS SNO ONSANI ZAT ION MAN S AND AODRI U 10. ~~~~~~~~~~~~~~~~ tAM

Dept. of Computer Science /
Univ. of Colorado at Boulder
Boulder. Colorado 80309 ___________________________

II . COIITROI.LING OPPICI NAMI AND AODRI U Ii. RIPeN? OATS

U . S. Army Research Office June 1918
Post Office Box 12211 ‘~ NUISSIN 0? PAO b

Research Triangle Park NC 27709 14
~& ISONITO~~NO AGINCY NAIL S ADDPt~ S1(U mIM..,s bus, Cw,0.tIM ~ 001..) IS. SICURIY? CLASS. (. as. . .., ~

Un~1~ssifie4
I’~~ k~~~S*1

VICA?I oNIOOSNGRA0IN
~~

_______________________________________________ 
NA

IS. ~~SrNsSUtI 0N $FATININ? c. ’ as. R~~.rf)

Approved for public release; distribution unlimited.

IT. D $tRiSut~O~ STAt INENT (•l a. ~~.&.ci usN..d 1* IS~~A 3 . SI dUt.,ail Si~~ ~~~~~~

NA

5. $UPPL(MINTARY MOTH

The findings in this report are not to be construed as an officie.].
Departn ent of the Army position , unless so- designated by other authorized
docwner.ts.

IS. kLv b R OS (CaWMs, a, ._,aa.. ~~~ SI n.c...us ~
. aid SdaiHS~. ~y blocS .w b.’)

lexical analysis, FORTRA~1 scanner , FORTRA II aramar

ANSTRAC? (CaiN,,.. a, ., ~~a, old. SI ~~c..us,y ,d ldsalll~. bp W oeS .iiaiSse)

There has recently been much Interest in th~a development of software valida-
tion tools for FORTRAN. Such tools are usually desianed to analyze programs

~~ written tn ANSI standard FORTRAN. However, because there are many dialects
and extensions of FORTRAN in use, it would be desirable to analyze these as
well. One solution is to develop a single diagnostic tool for standard FORTRAN
which may be easily modified to accept variants of the languaoe. Since most of - -

• the variations occur at lexical and syntactic levels , the design of a flexible

00 ~~~~~~~~~ 1473 to,vlOw o? I MOV U 5 eusoLtyg UnC~~L~ISit1(’4
SSCUS,tV CL ASSI P IC AT I O N OP tHI S PAGE (~~ sis Dslø ~~~~~~~ 



-
~

-
~ - -~ -~ 

~~~ -~~~~ -~~~~~ - -- -----~~~- ----~~~~ - -
~~~~~~

$ICU RITY CLAISI PICATION OP TH IS PAOL(S~Ia, 001. &.E.ad)NW.
lexical analyzer is a key Issue . The FSCAN Lexical Analyzer Generatinq System
has been designed with this purpose in mind. This report describes the FSCAN
lanquarte , a compiler for the lanauaae , and an interpreter for the resulting -

object code. An example of a complete FSCAN program Is included.k

j

111

SECURItY CLASSI?I CATION OP 1HI% PAGEfIN~.. 0.,. Iol.q. lJ

_ _ _  -— 
-
~~ ~~~~~~ .--~~-— — --—-. -~~~~~~~~~~~~~~~_- -- --- -—~~~~-~~~~~ - 



________________________________ —--

Abstract
There has recently been much interest in the development of software

validation tools for FORTRAN. Such tools are usually designed to analyze
programs written in ANSI standard FORTRAN. However, because there are

— many dialects and extensions of FORTRAN in use, it would be desirable to

analyze these as well. One solution is to develop a single diagnostic

tool for standard FORTRAN which may be easily modified to accept variants

of the language. Since most of the variations occur at lexical and

syntactic levels,the design of a flexible lexical analyzer is a key

issue. The FSCAN Lexical Analyzer Generating System has been designed

with this purpose in mind. This report describes the FSCAN language, a 4

compiler for the language, and an interpreter for the resulting object

code. An exampl e of a complete FSCAN program is included.

*cCa*tON f, H
Sm ~~Iti $.ctlsu
IX kff I.ctlss 0 

-

UIAISODNCED 0
.JIflIEICATION 

I, 
DI5TRIBU1~ON/ HAlLAP~U1Y costs

Oi~I. ~~~~ ~
- 
~— o r SPECIAL

- - -

~

-

~

----- -.-— -— -~~~- -- -~~~~- . --- - --- .~~ -- ~~~
- - --- -~~~~~~ —. .-



~ -~ -- -. — - --~~~~~~~~~~~~~ ---——--~~~ 
_ _ _ _ _ _ _ _

—l —

I. INTRODUCTION
- 

The first phase of the analysis of a computer program written in
some progranmilng language is “lex ical analysis” or “scanni ng”, where
the source text is broken up into the words or “tokens” of the program-
ing language. For most languages this is a relatively straightforward
task, as spaces or some other delimiter is required at any token separa-
tion points that could be ambiguous. Unfortunately the ANSI FORTRAN stand-
ard specifies that spaces for the most part are meaningless In FORTRAN
programs [1]. This creates several ambiguous situations that cannot be
resolved without backtracking by a left to right scan with single char-
acter lookahead of the source text. For example, if the string ‘DO ’ has
been read, it Is unclear whether the scan has reached the end of the

keyword, ‘DO ’ , in a statement such as

D O l Ø I~~~l,3

or whether the scan Is in the middle of a variable name in a statement

such as

OOl~~~5 * X

The problem of the lexical analysis of FORTRAN Is further complicated
by the existence of numerous dialects and extensions 0f FORTRAN that vary
according to the Installation and particular compiler in use. The pro-
blent is therefore most acute for a system such as the DAVE software val-
idation system [2] where it Is desirable that all variants of FORTRAN
be readable. Ordinarily this would entail recoding the lexical analyzer
module for each new FORTRAN variant , in addition to maintaining a library
of already coded lexical analyzer modules.

To minimize these tasks , the FSCAN (Fortran SCANner) Lexical Ana-
lyzer generating System was developed. The FSCAN system conSists of a
language, a compiler for the language, and an interpreter for the obj ect
code produced by the FSCAN compiler.

TI. THE LANGUAGE

The FSCAN lanciuaae (henceforth referred to simDlv as “FSCAN”~) was
desioned to allow the soecif ication of a comolex lexical analyzer , such
as that reouired by FORTRAN. In as concise and understandable a manner as
oossible.

- 



—2—

A. Programs and Procedures
An FSCAN program consists of a single FSCAN procedure (within which

may be defined additional procedures). An FSCAN procedure specifIes In
an extended BNF_style notation a gramar that describes a left to right
pass over the source text. Within the graninar, actions such as the gen-
eration of a token are indicated.

Syntax
An FSCAN procedure consists of a sequence of granmtatical rules which

are del imited by the keywords , ‘SCANNER ’ and ‘END’. Following each of
these keywords is the goal symbol for the sequence of rules; this also
serves as the name of the procedure. The redundant repetition of the
goal symbol is used by the FSCAN compiler to ensure that the ‘SCANNER ’ -

‘END ’ pairs are matched in the way the prograniner intended.
Example

SCANNER DIG ;
rule 1; rule 2; ...; rule n;
END DIG

Semantics -

The rule indicated by the goal symbo l of a, procedure specifies an
LR(l) parse of the source text which is performed when the procedure Is
called . The parse is performed in a longest match manner; namely, given
the choice between finishing and parsing more of the course text, the
procedure will always continue parsing .

B. Rules
An FSCAN rule is either a macro rule , a variable defining rule, or

a procedure rule. The scope of rule definitions corresponds to that of
ALGOL.
1. Macro Rules

As in a BNF rule, the left side of a macro rule is a nonterminal
while the right side is a sequence of alternatives. The extensions of
FSCAN are that each alternative may optionally have an associated action,
and that an alternative, rather than being simply a sequence of terminals
and nonterminals, may contain any of a variety of regular expression
style operators as well as parentheses for grouping .

.

~ 

.
5 

_______— — - ~~
-,•,.-. - - . —.-—--—---- - — - - . . - - -—--- -.

~ ~~~~~~~~~~~~~~



—3-

Syntax
Each alternative is preceded by a single-right-arrow (~~~ - ) .  The

optional action is placed at the end of the corresponding alternative
and is preceded by a double-right-arrow (~~).
Example

TEXT fscan_reg exprn 1 4 action 1
-

~~ fscan_reg_exprn 2
-
~ fscanjeg_exprn 3 4 action 2

Semantics
A macro rule is a standard macro in that the right part of the rule

textually replaces any occurrence of the nonterminal of the left part,
when the occurrence is in an FSCAN regular expression wi thin the scope
of the macro rule definition . A macro rule cannot be recursively de-
fined. Thus In the above example, the nonterminal , TEXT , could not appear
in any of the three FSCAN regular expressions in the right part. During
execution when any of the alternatives have successfully been matched
with the source text, the correspond ing action , if any, (s performed.
The compiler ensures at compile time that during execution of the object

code It is determinable which action, if any, is to be performed by ex-
amining the next source text character only.

2. VarIabl e Defining Rules
A variable defining rule is similar in form to a macro rule except

that the right side Is restricted to being a single alternative. The
flontermfnal on the left side names the variable being defined, in
additton to naming the regular expression on the right side, as in a
macro rule.
syntax

The single alternative is preceded by an equal sign (s).
Example

HCONST N fscan_reg_exprn
Semantics 1 :

A variable Is used to convey numeric information from the source
text to the FSCAN program. Its semantics correspond to those of a macro
rule except that an implicit “evaluation-action” is attached ~o the
single alternative of the right part. When executed this action evaluates
the string processed by the right side of the variable defining rule.

.~



- - ------ - - -~ -----------.-- -,-—- —.-—--—-— - — - -- - — - - - - --- ~~ —-- --~~ --~~ - --- - - - -  ~—•.- -.~~~----.--- -

-4-

The number produced is stored as the value of the variabl e defined by
that rule. The variable can then be used In FSCAN contexts where in-
tegers are expected, in which case no macro substitution occurs, but
rather , dur ing execu tion the integer value is that produced by the most
recent execution of that variable ’s execution action. The compiler en-
sures that it is always possible to derive an integer from strings 

-

matched by the right part of a variabl e defining rule.

3. Procedure Rule
A procedure rule is simply an FSCAN procedure, see II. A.

C. FSCAN Regular ExpressIons (abbreviation : FRE)

1. Atomic units
The atomic units of an FRE are terminals , nonterminals, and Integers.
a. Terminals

Syntax
A termina l is either a “kept-string” or a “deleted string”. A kept-

string is a sequence of characters enclosed in doubl e quotes (“) while
a deleted string is a sequence of characters enclosed in single quotes
( ‘) .  If a sharp (#) appears in the string, the sharp is ignored and
the next character is treated as the next character of the string, even
if that character is a double-quote, single-quote, or a sharp. For

terminals the strings are restricted to be of length one.
Examples

‘A’ II ;II 
~~~~~~ 

II#
~
III

Semantics
The character of the terminal is compared with the next character

of the source text. If they match, the source text character Is marked -

as “kept” or “del eted”, depending on whether the terminal is a kept—string
-

or a deleted-string. The FSCAN compiler will indicate * if it is ever
possible for a given FSCA N program to mark a source text character simul -
taneously as “kept” and “deleted”. *(with an appropriate error message
at compile time)

b. Integers

Syntax
An integer is a string of digits.

Examples
53 0 05

1..
_ _ _ _ ~~~ --~~~~~~~~-- - - -— ~~~~~~~~~~ -~~ S-~ - ~~~~~~~~~~~~~~~~ - - - --

-5-

Semantics
Integers have their usual meaning.
c. Nonterminals

Syntax
A nonterminal is a sequence of letters and digits , the first of

which is a letter, that is terminated by a character that is neither a
letter nor a digit.
Examples

A TEMP TEMP1 - B3B
Semantics

Non term inals can name macro ru les, variables , or procedure rules.
As mentioned earlier , macro ru le names are tex tua l ly repl aced by the
right part of the macro defining rule, for which the semantics have been
described. The semantics of variable names vary according to their con-
text. If a variabl e is used where an integer is expected, the current
value of the variable is used during execution; otherwise, the right part
of the variabl e definition (with implicit associated “evaluation action ”)
textually replaces the use of the variable name. When the non terminal
names a procedure, the appropriate procedure is called during execution .
The compiler ensures at compile time that at any point in execution , it
is determinable from the character presently being examined , whether to
invoke a procedure , and which one to invoke .
2. Operations

The operations from which FSCAN regular expressions are composed
can be divided into two types; basic operations, and extended opera tions
that can be defined in terms of the basic operations. Let A , B, C be
FRE’ s and let N be a variabl e or integer .

a. Basic Operations
Syntax

Al ternation : A B I C . .
Concatenation : A B C . .
Repetit ion : A*
Negation : NOT A

Example
NOT (“ .“I” ;” ?” ? ”) (‘ x ’*)

H
Semantics

An alternation successfully matches the source text if any of Its

al ternates does. A concatenation matches the source text if its operands
sequentially ma tch the source text. A repetition matches an arbitrary
number (possibly zero) of Its operand with the source text. The operand
of a negation is restricted to regular expressions that specify a set

of characters , all of which are kept-strings or all of which are deleted
strings. A negation then matches any character that is not in its
operand ’s charac ter set. If ma tched , a source character is marked as
“kept” or “deleted” if the operand character set consists of kept-strings
or deleted-strings, respectively.

b. Extended Operations
Syntax

+ : A + a A (A*)
A ? - A 1 ()

LIST : A LIST B a A (B A)*
ELSE : A ELSE B ELSE C ELSE ... A I B I C I

** : A** N a A A A . . . A (N times)

?* : A ?* N a A? A? A? .. A? (N times)
Restrictions: The operands of ELSE and the first operands of ** and
?* are restricted to being the names of procedures.

Semantics
The semantics of the extended operations are largel y determ ined by

those of the basic operations by which they are defined . In addition ,

though ,the ELSE construct prov ides a “bac kup and restore” feature
where if the first operand fails to successfully match the source text,

the second operand is tried , etc. Also the ?* operator provides limited
backup In the sense that, if less than N A’ s have been successfu lly
matched, the parse Is backed up to the state at which the last A

(possibly no A’s) has been successfully matched.
c. Actions

Syntax
Actions are either kept-strings, deleted-strings, in tegers , or

-

nonter,ninals.

Examples
“TNT” ‘REAL ’ 8 203 CARDS RESCAN

~

-— . -- — . , -- -~~~ —-- -~~-- --~~-- - - .- - - - - - -~~ -~~ - .- -- - - -

—7—

Semantics
A string or an integer indicates that a token is to be output. For

a string, the type of the token output Is indicated by a unique integer

associated at compile time with that string; for an integer, the type of
token is indicated during execution by outputting the value (e.g., “8”

or “203”) of the integer action. Al so output during execution is the
sequence of kept characters that were matched by the alternative corre-
sponding to that action being performed. Actions that are deleted-
strings indicate that their corresponding alternatives only mark char-

acters as deleted , and thus it is sufficient to simply generate the
token type when the action Is performed.
(Note: A program cannot contain both integer and string actions.) A
nonterminal action indicates that the sequence of kept characters match-

ed by tha t action ’s alternative is to be rescanned by the FSCAN procedure
named by the nonterminal . This process of rescanning is sometimes

referred to as “screen ing”.

-

~

-- - -- —--—--—--~~~~~~~~~~~~ - -~~~~~~~ .--.-~-~~--- - - .- - - . - .--- ---. - ~~~~~- - --~~

-8-

III. EXAMPLE OF A COMPLETE FSCAN PROGRAM
This FSCAN program specifies the scanner used by the FSCAN con- -

piler, i.e., It performs the lexical analysis of an FSCAN program.

SCANNER P5CM
PSCAN — > (‘ ‘~~ (KEYWO RD ELSE NAN! / INT!GER / ES1’RING / DSTRING /

DELIMITER / OPERATOR / COSSIEIST~)
SCANNER KEYWO RD

K EYWORD —> K EYWD MOTACHAR~~~O
E EYWD —, ‘5’ ‘C’ ‘A’ ‘I’ ‘N’ ‘V ‘R’ •) $

— > ‘V ‘N’ ‘D’ •> 7
—, ‘V L’ ‘H’ ‘I’ •) 9
— , ‘L’ ‘I’ ‘S’ ‘T •) 14
—> ‘N’ ‘0’ ?‘ •> 1S p 1ND kETWO RD~~SCANNER WANE :

NAIl! —> KACRAR (IACHAR / IDIGIT) * —, 20 ~ END MANE ;
IN!IGIR —, KDIGIT+ ~IOTD’~ 0 •> 21 ~ESTRING —> DQ (NOTDQSH / SHARP KC) DQ —> 22
DSTRING — > SQ (NOTSQSH / SHARP KC) * SQ -> 23
DELINITIR —> ‘ :‘ —) 2

—> ‘;‘ —> 3
—> ‘C . —) 5
—> ‘) ‘ •> 6 ;

OPERATOR —> ‘— ‘ ‘> ‘ —> 4
—) ‘/ ‘ •> 10—> a NOTRAB~~ 0 —> 11
—> ‘ ‘ ‘) —> 12
—> ‘?‘ NOTAST**O •> 13
—) ‘ *1 ~ * 1 a) 15
—> ‘?‘ ‘~~ ‘ a) 16
—> ‘ ‘ NOTAS?~~ 0 —) 17

COMMENT -> SHARP (NOT SEARP) SHARP
KACHAR —> A /’B’/’C’/’D’/’!’/’p’/’G’/’H’/’I ‘/‘.T’/ ’K’/’L’/’N’/

SCANNER NOTACR AR
NOTACEAR —) NOT (‘A’/’1’/’C’/’D’/’E’/’p’/’G’/’H’/’I’/’J’/’Ks/’L./~N ./‘N ’/’O’/’P’/’Q’/’R’/’S’/’T’/’U’/’y’/’W’/’X’/’y’/’5’’, ; END NO’PACHAR

KDIGI? — , 0’/’1’/’2’/’3’/’4’/’5’/ 6’/ 7 /’.’/’,’ :
SCANNER NOTD

MOlD -> NOT EDIGI? ; END MOlD
DQ —) ‘‘‘ SQ —> ‘9’ ’ SHARP — > ‘99’
NOTDQSH — > NOr(’$I’/’O”) ; !IOTSQSH —) NO?($O’/”) :
SCANNER 1IOTRAB

MOTRAS —> NOT ‘)‘ ; END NOTRAB
SCANNER MOlAR?

NO?AB? -> NOT “ ; END MOlAR?
KC — , (NOT’ ‘)/ •
END P5CM

LINE NUMBER INTERPRETATION

1 The top level procedure, and therefore the program,

is called FSCAN.

2 The scanner accepts a sequence of KEYWORD’s, NAME ’s,
INTEGER’s, etc., each of which can be preceded by
an arbitrary number of spaces. As KEYWORD’s and

NAME’s cannot be differintlated by an SIR (‘I) process,

4 the ELSE operation must be used to allow the accept-
ance of either. Note that KEYWORD’s being the first

— 4

-9—

LINE NUMBER INTERPRETAT ION

2 operand of ELSE will cause a string that could be
(con t’d) accepted as either a KEYWORD or a NAME, to be accept-

ed as a KEYWORD.

3 A KEYWORD is a KEYWD followed by some nonaiphabetlc
(NACHAR) character. Note that the exponent of zero
indicates that although it is checked that the follow-
ing character is nonaiphabetic, no (zero) nonelph-

betic characters are actually processed at this point.
In case the following character were alphabetic, the
KEYWORD scanner would fa i l , and the alternative, NAME,
would be invoked at the point in the input where the
KEYWORD scanner had been initiated.

4 KEYWD will accept, and mark as deleted, the strings

“SCANNER :, “END” , “EL SE” , “LIST” , and “NOT”, and will
output tokens numbered 8, 7, 9, 14, and 19, respec-
tively.

5 NAME will accept, and mark as kept, an alphabetic

character followed by an arbitrary number of alpha-

numeric characters. Token number 20 will then be out-

put, as well as the sequence of kept characters mark-

ed by NAME.

The rest of the program Is Interpreted In an analogous fashion. It thus

provides a rigorous and complete specification of the lexical analysis of

FSCAN programs. The abbreviated non-terminals are to be read as follows:

KSTRING : kept string
DSTRING : deleted string
NOTACHAR : not an alphabetic character
KACHAR : kept alphabetic character
KDIGIT : kept digit
MOlD : not a digit
DQ : double quote
NOTDQSH : not a double quote or a sharp
KC : kept character

SQ : single quote

.~~~~- - —~~~~~~-

- - --— — - -- ----~~ -‘---- - - -- - --- --~-- -- --- —

~~~

- -- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~

-10-

NOTSQSH : not a single quote or a sharp
NOTRAB : not a right angle bracket
NOTAST : not an asterisk

With this information , the sample FSCAN program also provides a structur-
ed and understandable description for a human reader.

IV. PROGRAMMING HINTS FOR FSCAN
Much of FSCAN programing is similar to writing a granvnar for some

parser generator. The regular expression—style operators are, for the
most part, straightforward extensions. The distinction , though , between
a procedure and a macro-rule, i.e., “SCANNER A : A B C, END A” vs.
“A -

~~ B C” does not correspond to any grantnatical concepts, but rather to
the normal programing language concepts of a procedure and a macro. 

-

In particular , a macro (when used in more than one place) causes a
larger object program to be generated (as a copy of the macro Is insert-
ed at each use of the macro) while a procedure executes more slowly
(due to the overhead of the procedure call and return). An additional
distinction that Is important for programing Is that while only one
procedure can be executing at any particular time, several maclo rules
can conceptually be executing in parallel .

The “ELSE” operator involves considerably more overhead than the
“ i” operator in that the state of the scanner must be saved so that it -

can be restored in case a particular alternative of the “ELSE” operator
fails , implying the next alternative must be tried. In contrast, the - -

“ i” operator conceptually appl ies all of its alternatives In parallel .
Thus whenever possible, the “I” operator should be used for the sake . -

of efficiency.

The “**“ and “?*“ operators are conceptually straightforward, except
possibly for the following two characteristics. First, “A~~$” indicates
that the next character in the input is checked for a match with a
l egal first chara cter of A, but that A does not actually process any
charac ters, due to the exponent of ~. Second, the ‘1’” operator In-
volves the same overhead as the “ELSE” operator , since “A ?* 5” must
have the ability to back up to the state of the scanner after the third
A was accepted, In case the entire fourth A could not be matched.

IL 
- -



~~~~~~~~~~~~~a— -
~

----- - ----
~

—11 —

V. IMPLEMENTATION DETAILS

Compiler. The complete FSCAN compiler runs in 36,000 (decimal)
words on a CDC 6400 machine. The compile time for an FSCAN program
for ANSI FORTRAN is 28 seconds. The size of the object code (tables)
produced for this scanner Is 1400 (decimal) words.

The compiler is written in machine-independent standard ANSI
FORTRAN, with the following exceptions:

1. Certain non-standard functions are assumed:
a. lAND (A,B), IOR (A ,B), INOT (A)

These should return the respective bitwise logical opera-
tion on their arguments

b. LRS (A,!), LLS (A,I)
These should return the logical binary right and left
shif t, respectively, of the argument A by the integer
amount I, with zero fill.

c. INTGER (A)
The argument A Is a character stored in lH or Al for-
mat (assumed equivalent). The result is an integer
such that:
1. 0 < INIGER (A) ~ # distinct characters
2. INTGER (A) = INTGER (B) 1ff A is the same char, as B
3. INIGER (lHx) - INTGER (iHy) = x-y If x, y are digits,

I.e. , INTGER (lH7) - INTGER (1H3) = 4

d: ENDFIL (I)
This returns true 1ff logical unit I is at end of file.

2. It is assumed that the # characters � 2 (1 bits in a word).
If this is not the case, the bit vector module would have to
be altered to represent a vector as more than 2 words.
Note: This machine dependency is being replaced by the re-
quirement that on importation to a new machine, the constants
NMB!T’S and NMCHRS be initialized to correspond to the new
machine. For CDC, the initialization is

DATA MIS 11Sf 60/, NMCHRS/64/

Ifltef~reter. The object code for the interpreter consists of 3000

t

_______________ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ ________ - .~~~---- -~~‘——--——-~~ - — - -
~~~~~

— --‘



— - --—~—-- .

-12-

words excluding the space required for the tab1es~, The interpreter
source code is machine—Independent standard ANSI FORTRAN, with the
same exceptions found for the compiler,

The tables output by the compiler are in the form of a BLOCK DATA

ANSI FORTRAN subprogram which is to be compiled and loaded with the

object code for the Interpreter.
Note: For maximal time efficiency, the routines IN and ADVANC should

be replaced by equivalent optimized machine-language routines.

The source for the compiler is on file COMPIL.

The compiler is called by: CB, Input, l isting, errors, tables.

The source for the interpreter is on file MID.
The Interpreter is called by: NTDB, input, listing, errors.

• The FSCAN program for ANSI FORTRAN is on the file SCAN.
The rile SCANT was produced by a CS, SCAN, listing, errors, SCANT run.

— (NTDB is produced from the compilation of SCANT and MID)

To use the scanner , NTDB ,

for each desired token , call SCANNE0;

the token will be returned in /TOKEMC/,

where TKNTYP is the type of the token
TKNCHR (30) is an array of Al characters (the sub-rosa info)

where TKNCHR (1) ... TKNCHR (ITKNCH) are the characters
TOKERR is a logical flag which is true 1ff the token

conta ins an error



~
•

~
—

~
-- -- - •-~ - - • - -• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
-- - ---

-1 3-

Appendix

Syntax of FSCAN programs

SCANNER
-

~~
‘SCANNER’ GOAL_SYMBOL ‘ : ‘ (RULE ‘ ;‘) + ‘END ’ GOAL_SYMBOL ;

RULE
+ NONT ERMINA L (‘

~~‘ REG EXPRN(’4 ‘ ACTION)?)+
VARIABLE ‘= ‘ REG_EXPRN

+ SCANNER ;

REG_EXPN + REG_TERM list ‘I ’ ,

REG_TERM -‘ REG FACTOR +

REG_FACTOR
-
~~ REG PRIMARY (~~~*~~~! I + I I ~~~

? I) ?

+ ‘NOT ’ REG_PR IMA RY
+ REG_PR IMARY ‘LIST ’ REG_PRIMARY;

REG_PRIMARY

+ ‘ (‘ REG_EXPRN ? ‘) ‘
-

~~ NONTERMINAL list -‘ELSE ’
-
~~ NONTERM INAL (‘**‘~~‘?*‘) EXPONENT
+ TERMINAL ;

ACTION -‘~ SCREENER I TERMINAL I ‘<INTEGER> ’ ;
EXPONENT -‘ VARIABLE ‘<INTEGER> ’ ;
GOAL SYMBOL + ‘<NAME> ’ ;
NONTERMINA L • ‘<NAME> ’ ;
VARIABLE • ‘<NAME> ’ ~
SCREENER + ‘<NAME> ’ ;
TERM INA L ~ ‘<KEPT_STRING> ’ I ‘<DELETED_STRING> ’ ;

Note: “A?” is equivalent to “(Aic)”
“A list B” is equivalent to A(B A)*

_ _ _ _ _ _ _ _ _ _ ~~~~—-—~~~~~~~~~~~~~~ rn—-.- — --~~~~ —— - •— -~~~~~~~~

-14-

VI. Bibliography

[1) ANSI : FORTRAN. X3.9-l966, American National Standards Institute
1966.

C2] OsterweIl, 1. J.; and Fosdick, 1. 0. “DAVE — a validation , error
detection and documentation system for FORTRAN programs,” Sof tware
Practice and Experience.

~~~~~~~~~~~~~~~~~~~~~~ J


